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Abstract

Significance: Monitoring the movement and vital signs of patients in hospitals and other
healthcare environments is a significant burden on healthcare staff. Early warning systems using
smart bed sensors hold promise to relieve this burden and improve patient outcomes. We propose
a scalable and cost-effective optical fiber sensor array that can be embedded into a mattress to
detect movement, both sensitively and spatially.

Aim: Proof-of-concept demonstration that a multimode optical fiber (MMF) specklegram sensor
array can be used to detect and image movement on a bed.

Approach: Seven MMFs are attached to the upper surface of a mattress such that they cross in
a 3 × 4 array. The specklegram output is monitored using a single laser and single camera and
movement on the fibers is monitored by calculating a rolling zero-normalized cross-correlation.
A 3 × 4 image is formed by comparing the signal at each crossing point between two fibers.

Results: The MMF sensor array can detect and image movement on a bed, including getting on
and off the bed, rolling on the bed, and breathing.

Conclusions: The sensor array shows a high sensitivity to movement, which can be used for
monitoring physiological parameters and patient movement for potential applications in health-
care settings.
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1 Introduction

Global populations, particularly in developed nations, are aging. For example, up to 10% of
Australia’s population is predicted to be above age 85 by the end of the century, up from 1.6%
in 2008.1 The aging population will add a significant financial and human resources burden on
healthcare systems, particularly in the management of chronic conditions.2 Future pandemics
have the potential to further stretch healthcare resources, as is now well known in the current
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SARS-CoV-2 pandemic.3,4 Care for patients with chronic illnesses requires laborious monitoring
from nurses and other healthcare providers, increasing costs and adding pressure to an already
stretched workforce, including the current global shortage of nursing staff.5,6

Nonintrusive sensing technology has the potential to play an important role in managing this
challenge. The ability to record vital signs, such as heart rate and respiration rate, as well as
patient movement and pressure points, can reduce labor requirements and lead to improved
patient outcomes and quality of life.7–9 Sensors exist, particularly wearables, for the detection
of many parameters, including physical activity, pressure, temperature, heart rate, respiration
rate, blood pressure, blood oxygen saturation, and heart electrical activity.10 These are typically
point-parameters that are measured at a single location, such as on a person’s wrist. For appli-
cations that require spatial information, such as limb movement11–14 or activity on a bed,15–17 an
array of either accelerometers or pressure sensors is required. Alternatively, camera-based tech-
nology, including depth,18 thermal,19 and color20 cameras, have been widely investigated for bed
monitoring for applications such as sleep studies and falls prediction and detection. However,
camera-based monitoring can raise issues of privacy and is therefore limited in which application
settings it would be tolerated. There exists a need for scalable and cost-effective sensor tech-
nology that can output spatial information while being robust, unintrusive, and discrete.

Optical fiber sensors have been implemented in numerous biomedical and biomechanical
applications due to their properties of being flexible, lightweight, and surprisingly strong.21–23

A key differentiator from point-wise electronic sensors is that the cable itself can form the sensor,
allowing for sensitive accumulated measurements along their length or even spatially resolved
measurements using specialized optical interrogation techniques. Being only a fraction of a
millimeter in diameter, they can be directly incorporated into wearables with minimal impact
on patient comfort. It has been shown that various optical fiber sensing schemes are sensitive
enough to measure vital signs and patient movement. For example, direct intensity transmission
measurements through coiled optical fiber mediated by bend loss have been demonstrated as
sufficiently sensitive as a wearable sensor to measure heart rate and respiration rate.24–26 Such
a sensor has the benefit of being cheap and simple to interrogate but is only a single-point mea-
surement and requires specific packaging to implement the microbending effect. An alternative
method is to use fiber Bragg gratings, which can be multiplexed to yield spatial information, and
have also been demonstrated for measuring heart rate and respiration rate as a wearable
sensor.25,27 However, fiber Bragg gratings are wavelength division multiplexed, which requires
expensive optical interrogation equipment. A promising direction of research is the use of inter-
ference effects in multimode optical fiber (MMF), i.e., monitoring the speckle output of an
MMF.28 Being based on optical interference, the speckle output is highly sensitive to perturba-
tions along with the fiber but can be cheaply interrogated using a digital camera. This method has
been demonstrated for applications such as force myography29 and the measurement of heart rate
and respiration rate when attached to a bed.30,31 The complex and sensitive information provided
by the specklegram output of an MMF is a topic of recent interest, particularly when combined
with machine learning approaches, where it has been shown that spatial information can be
extracted without requiring time or frequency domain interrogation schemes32,33 and can be used
to extract measurement signals well below noise levels.34 While it is possible to extract spatial
(multipoint/distributed) sensing information from MMFs using machine learning, this approach
fundamentally relies on mode coupling and requires pretraining, with examples including 3000
samples in the case of strong mode coupling in a ring core fiber33 and ten thousand or more
samples for conventional MMF.32,33 These approaches have so far only demonstrated the clas-
sification of a perturbation location without providing quantitative information on the degree
of perturbation.

Here, we propose a cheap and simple-to-implement approach to spatially resolved MMF
specklegram sensing for use in a smart bed. Our approach takes advantage of the advancements
in modern camera technology and requires only cheap optical fiber cable with no additional
optical sensor elements. We use an array of seven MMF cables and bundle them at the input
and output such that a single coherent light source and single camera are required for interrog-
ation. We present a proof-of-concept demonstration that the sensor array can detect basic move-
ments and breathing of a person on a mattress and can provide basic spatial information using
only a simple correlation algorithm. In the future, we anticipate our method could be expanded
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both in sensitivity and spatial resolution without increasing interrogation costs through further
multiplexing and taking advantage of emerging machine learning algorithms.

2 Concept

The propagation of coherent light through an MMF produces a speckle output due to the super-
position of multiple guided orthogonal modes. For a step-index optical fiber with a circular core
the number of modes, N, can be estimated using N ¼ V2∕2, where V ¼ 2πaðNAÞ∕λ is the nor-
malized frequency, a is the core radius, λ is the free space wavelength of the propagating light,
and NA is the numerical aperture of the fiber.

The MMF used in this work (OM1 specification) has a core diameter of 62.5 μm, a numerical
aperture of 0.275, and we operate at a wavelength of 633 nm. This yields a normalized frequency
value of 85.3 and thus has an estimated number of modes of 3640. In practice, less modes may be
launched in the fiber if the launching optics have a lower numerical aperture. Mode-dependent
loss will also cause some of the highest order modes to be lost, depending on the multimode fiber
length and any bending applied. However, the estimated number of modes gives an upper bound
estimate that is useful for predicting the complexity of the speckle pattern that will be produced
from the multimode fiber.

Each mode propagates with a different phase velocity, which can be represented by an effec-
tive refractive index, and associated with each mode is a propagation invariant electromagnetic
transverse field profile. As the phase velocity of each mode is different, and each mode profile
is different, a complex interference intensity pattern, I, will be formed at the fiber output as
described as

EQ-TARGET;temp:intralink-;e001;116;452Iðx; yÞ ¼
����
X

j
aj~̂eðx; yÞ exp

�
i
2π

λ
neffj L

�����
2

; (1)

where aj, neffj , and ~̂eðx; yÞ are the mode amplitude, effective refractive index, and normalized
electric field distribution of the j’th mode, respectively, and L is the physical length of the fiber.
Here, we define the propagation axis of the fiber to be along the z coordinate and the transverse
plane is given by the x and y coordinates. Any physical perturbations that occur on the optical
fiber, such as strain and bending, will cause a change in the optical path length (the effective
index multiplied by the physical length) of the modes. As this is carried by the phase term in
Eq. (1), it leads to complex and sensitive changes to the speckle pattern output as schematically
shown in Fig. 1.

The next step is to quantify how much the speckle pattern has changed when a physical
perturbation has occurred. Many advanced techniques have been used for image transmission

Fig. 1 Concept diagram showing how physical perturbations on the MMF, such as strain and
bending, can lead to complex changes in the speckle output.
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through an MMF, such as transmission matrix35,36 and deep learning37,38 approaches. In this
work, we use a simpler algorithm based on the dynamic temporal change of a zero normalized
cross correlation (ZNCC),39 which is given as

EQ-TARGET;temp:intralink-;e002;116;699ZNCCi ¼ 1 −
�

1

ðti − ti−1Þ
� P

N
n¼1ðIiðnÞ − IiÞðIi−1ðnÞ − Ii−1ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
n¼1 ðIiðnÞ − IiÞ2

P
N
n¼1 ðIi−1ðnÞ − Ii−1Þ2

q ; (2)

where Ii is the camera intensity of the i’th frame of the imaged speckle pattern, ti is the time
stamp of the i’th frame, Ii is the average intensity of the i’th speckle image, and n is the index
of the camera image pixels (two-dimensional) with a total number of pixels being N. The ZNCC
will range from zero to unity, where zero indicates the speckle pattern of a particular MMF
output has not changed since the previous frame while unity shows complete decorrelation from
the previous frame. Note that here we consider the frame-to-frame change in ZNCC such that
only the dynamic changes are captured, avoiding issues of limited dynamic range and drift that
can plague measurements on slow-moving parameters, such as temperature.39

We now show in the following sections how this concept can be used to create a simple
sensor array by monitoring multiple MMFs simultaneously. Importantly, a single camera and
single light source can be used for multiple MMFs so that the spatial information can be scaled
without requiring additional detection optics.

3 Materials and Methods

3.1 Multimode Fiber Bundle

We used seven commercially available and low-cost MMFs with OM1 specification (FS.COM).
Each MMF was ∼5-m long, with a core diameter of 62.5 μm, cladding diameter of 125 μm,
coating diameter of 250 μm, and outer buffer diameter of 900 μm. The outer buffer was stripped
for a length of ∼300 mm, bundled into an 18-gauge drawing-up needle, and fixed into place
using epoxy. The tight-fitting of the coated fiber meant that the seven fibers naturally settled
into a hexagonal arrangement. After the epoxy had cured, the tip of the fibers protruding from
the needle were cut and polished to a flat surface, as shown in Fig. 2. This process was repeated
for the far end of the fibers for both optical launching and imaging.

Fig. 2 Microscope image of the seven MMFs epoxied into the drawing up needle. The far end
of the fibers was illuminated with a red laser source so that the fiber cores were visible under the
microscope.
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3.2 Optical Detection

The bundled fiber ends were mounted onto three-axis translation stages for positioning of the
launching laser beam and imaging onto a camera. Light from a coherent visible wavelength
(633 nm) light source was coupled with a single-mode fiber (Thorlabs, 630HP) and then colli-
mated using a 10× microscope objective to yield a beam with ∼3.4-mm diameter. The colli-
mated beam was then directed onto the end face of the MMF bundle, which was intentionally
overfilled to have relatively uniform excitation across the seven fibers. The far end of the fiber
bundle was then imaged onto a CCD camera (Ophir-Spiricon, SP300, 12-bit, grayscale) using
a 10× microscope objective. The full camera resolution was used (1928 × 1448 pixels) at a
frame rate of ∼2 Hz. An example of the image is shown in Fig. 3, where the dashed boxes show
the 200 × 200 pixel regions used for analysis (ZNCC) for each individual MMF speckle
pattern.

3.3 Sensor Attachment to a Mattress

The seven multimode fibers were fixed to a spring mattress with a foam top. Three fibers were
laid vertically along the bed while four were laid horizontally, leading to 12 crossing points
as shown schematically in Fig. 4.

As will be shown experimentally in Sec. 4, multiplying the sensor response of each hori-
zontal and vertical pair of MMFs yields spatial information on the movement that occurs at these
crossing points. In principle, mathematically, we have 12 unknowns (crossing points, sij) for
seven knowns (ZNCC for seven MMFs), making it impossible to determine a unique value for
the movement that has occurred at each crossing point. However, in practice, the movement often
occurs in clustered locations on the mattress where several crossing points show minimal signal.
Therefore, in this work, we use a simple algorithm where the vertical and horizontal signals are
multiplied to yield basic spatial information on movement as given as

EQ-TARGET;temp:intralink-;e003;116;415sij ¼ ZNCCi × ZNCCj; (3)

where ZNCCi and ZNCCj are the ZNCC scores for the three vertical MMFs and the four
horizontal MMFs, respectively.

We compare this to a linear-programming (LP)-based approach to solve for crossing points,
Sij, using the output ZNCC from the seven MMFs. This approach, although less intuitive, is
both mathematically rigorous and computationally tractable, except in certain extreme cases.

Fig. 3 Example camera image of the output from the multimode fiber bundle. Yellow-dashed
boxes show the 200 × 200 pixel regions used for the ZNCC calculations for each fiber.
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The objective is to determine the unknown matrix of positive entries, Sij, from the output ZNCC
values for various horizontal fHig and vertical fVjg fibers. It is assumed that the ZNCC value
of a particular fiber is a sum of all the crossing points along with that fiber, Hi ¼

P
j Sij and

Vj ¼
P

i Sij. These equations impose linear constraints on the entries of the matrix, Sij. A fea-
sible matrix of all positive entries, which satisfies these constraints is obtained numerically using
the built-in linprog function in MATLAB. A detailed mathematical derivation of the approach
and discussion of its validity is provided in the Supplementary Material. The results of the
LP approach match closely with the results of more intuitive but approximate, multiplication
approach discussed above (see Videos 1–3, listed in the caption to Fig. 5). A discussion of when
the two approaches will give the same answer, and relative merits and demerits of each when
they differ, is also provided in the Supplementary Material.

4 Results and Discussion

We have performed a proof-of-concept demonstration of the multimode fiber sensor array for
smart bed monitoring applications. Three procedures were performed to demonstrate potential
movements of interest: (a) getting on and off the mattress, (b) rolling across the mattress, and
(c) breathing. This demonstration was performed by a healthy adult (male, 35 years old, 82 kg)
with the results shown in Fig. 5. The left-hand side traces are the ZNCC score averaged across
the seven multimode fibers, indicating total movement but without spatial information. The
right-hand side figures show spatial information from the crossing points, sij. The spatial plots
in Figs. 5(a) and 5(b) show that movement across the left and right side of the mattress can be
reasonably discriminated. Figure 5(c) shows the response when the participant did not move
but laid flat at the center of the mattress and took two breaths. The breaths in and out were
intentionally separated in time to observe the response of the sensor array. The sensor array is
sufficiently sensitive to detect breathing, while the location of the participant could also be iden-
tified. As expected, the strength of the signal from breathing is less than the gross movement in
Figs. 5(a) and 5(b).

Fig. 4 Schematic diagram of the multimode fiber array. The seven MMFs were bundled at the
input and output for launching the laser light and monitoring the output on a camera, respectively.
The three vertical (V i ) lines and four horizontal (Hj ) lines indicate the location of the seven
multimode fibers. There are twelve corresponding intersection points, sij .
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Careful analysis of Fig. 5(a) also shows that the sensor array successfully detects the presence
of a person on the mattress in the absence of movement. This is to be expected due to movements
associated with breathing and heartbeat. That is, in region A (off the bed) the ZNCC value with
an uncertainty given as three standard deviations is 0.0019� 0.0013 while in region C (on the
bed) this value is 0.0091� 0.0037, showing that these two states are clearly distinguishable.

Fig. 5 Multimode fiber sensor array test results. Left-hand side plots show the ZNCC score aver-
aged across the seven MMFs. The right-hand images show the scores from Eq. (3) for the twelve
intersection points. (a) Participant got on and off the bed, first the right-hand side then the left-hand
side, corresponding to Fig. 4 (Video 1, MP4, 5.6 MB [URL: https://doi.org/10.1117/1.JBO.27.6
.067002.1]). (b) Participant rolled across the bed, first from left to right, then right to left
(Video 2, MP4, 3.9 MB [URL: https://doi.org/10.1117/1.JBO.27.6.067002.2]). (c) Participant laid
on the center of the bed without moving and took two breaths (Video 3, MP4, 3.3 MB [URL: https://
doi.org/10.1117/1.JBO.27.6.067002.3]). Videos also display the array outputs using the linear pro-
gramming approach, which shows qualitatively similar results. Further information on the linear
programming approach is given in the Supplementary Material.
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Therefore, the MMF sensor array could be used as an alternative to hospital bed pressure sensors
for detecting when a patient leaves a bed.

A further test was performed to demonstrate the ability of the sensor array to detect the pres-
ence of a person on the mattress due to their physiological state. In this test the participant lay
stationary on the mattress for 60 s after a period of inactivity, that is, at rest. The participant then
undertook 60 s of rigorous exercise (running) and then returned to the mattress motionless for
60 s. The average sensor response over this test is shown in Fig. 6. We note that the trace was
normalized, as the optical fiber imaging alignment had been repositioned from the results shown
in Fig. 5 (experiment performed on different days) and thus the magnitude of the sensor response
is not directly comparable. The results clearly show that the sensor array responds strongly to the
physiological effects of the rigorous exercise, primarily increased heartrate and breathing. While
the acquisition rate used during these tests (2 Hz) was not sufficient to resolve the heart and
respiration rates in these scenarios, the overall increased response of the sensor array clearly
shows the ability to detect this level of motion.

In addition to temporal resolution considerations, further development of the sensor array
approach could be to increase the spatial resolution using additional MMFs. In this work, the
use of seven optical fibers meant that they could be bundled in a natural hexagonal arrangement
for simple connector fabrication. This allowed for a 3 × 4 sensor configuration, which was a
compromise between the ease of fabrication while obtaining basic spatial information. Future
arrays could be fabricated with, e.g., 19 MMFs, which can also form a hexagonal bundle. This
could allow, e.g., 9 × 10 arrays with 90 crossing points.

It is envisaged that this MMF sensor array concept could allow for noninvasive monitoring
of patients in hospital and nursing home settings, where the overarching aim is for improved
health outcomes and reducing the human resources burden of manual monitoring of patients. We
speculate healthcare tasks that may particularly benefit include:

4.1 Falls Risk Reduction

Falls by in-hospital patients are a significant healthcare cost and must be prevented.40 Existing
weight-based hospital bed pressure sensors are limited in that they generally cannot predict when
a patient will exit the bed, until part of the patient is already touching the floor, leaving little time
for nursing staff to respond and assist the mobilizing patient. The complex spatial information of
the MMF array may provide early warning for at-risk patients.

4.2 Pressure Area Care

Pressure injuries acquired in hospital and care settings continue to be a significant burden on the
health system and reduce the quality of life for patients, despite being generally preventable. 41,42

Key components of prevention include adequate movement, and altering the magnitude and/or
duration of pressure loading such as through regular patient turns.43,44 Spatiotemporal

Fig. 6 Multimode fiber sensor array test average response where the participant lay stationary
on the mattress, before and after a 60-s interval of rigorous exercise.
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quantification of a patient’s history of movement would allow for better-informed nursing deci-
sions to prevent pressure injuries. For example, alerting nurses that a patient requires pressure
area care if the patient has not made enough pressure-related adjustments in their bed in
recent hours.

4.3 Monitoring of Respiration Rate and Work of Breathing

Respiration rate is often considered the most critical vital sign for nursing staff to monitor accu-
rately for early detection of patient deterioration.45–47 This is either done manually by counting
over 1 min, or, continuously using monitors that measure either electrical activity in the chest,
or carbon dioxide from the breath. Manual methods are often completed poorly or in haste by
nurses.45 Both continuous methods require devices to be attached to the patient, either to the
chest, as a mask on the face, or a ventilator; neither of which may be appropriate in ambulatory
patients and/or in acute wards, or aged care settings. The ability to continuously, noninvasively,
and cheaply monitor respiration rate would allow far greater prevalence of monitoring this
important vital sign. Furthermore, the ability to measure the work of breathing, which is the
energy required per breath and the relative use of accessory muscles, is another significant ob-
servation that is indicative of respiratory distress yet is difficult to quantify outside of clinician
observation.48 The spatial information of the MMF array may allow noninvasive quantification
and monitoring of changes to the work of breathing.

5 Conclusions

We have presented a proof-of-concept demonstration, for the first time to our knowledge, a
cheap and scalable smart bed motion detection scheme using an array of MMFs with a single
laser source and single camera. This provides both information on the magnitude of the move-
ment of a person on the smart bed and spatial information of where that movement has
occurred. The sensor array is also sufficiently sensitive to monitor breathing and more gen-
erally the presence of a person stationary on the bed. While for this proof-of-concept dem-
onstration we have only shown the detection of a few basic movements, in the future, the
scheme can be used as a platform for high-spatial-density sensing and more advanced signal
analysis, such as machine learning to capture and analyze more complex patient movements.
Future research opportunities include increasing the spatial and temporal resolution, designing
methods for best integrating the sensor array into the mattress, and verification for clinically
relevant patient movements.
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